Recents in Beach

header ads

How does an IR sensor work?

What is an IR sensor?

An IR sensor is a device which detects IR radiation falling on it. There are numerous types of IR sensors that are built and can be built depending on the application. Proximity sensors (Used in Touch Screen phones and Edge Avoiding Robots), contrast sensors (Used in Line Following Robots) and obstruction counters/sensors (Used for counting goods and in Burglar Alarms) are some examples, which use IR sensors.

Working Mechanism

An IR sensor is basically a device which consists of a pair of an IR LED and a photodiode which are collectively called a photo-coupler or an opto-coupler. The IR LED emits IR radiation, reception and/or intensity of reception of which by the photodiode dictates the output of the sensor. Now, there are so many ways by which the radiation may or may not be able to reach the photodiode. 

Direct incidence

We may hold the IR LED directly in front of the photodiode, such that almost all the radiation emitted, reaches the photodiode. This creates an invisible line of IR radiation between the IR LED and the photodiode. Now, if an opaque object is placed obstructing this line, the radiation will not reach the photodiode and will get either reflected or absorbed by the obstructing object. This mechanism is used in object counters and burglar alarms.

Indirect Incidence

High school physics taught us that black color absorbs all radiation, and the color white reflects all radiation. We use this very knowledge to build our IR sensor. If we place the IR LED and the photodiode side by side, close together, the radiation from the IR LED will get emitted straight in the direction to which the IR LED is pointing towards, and so is the photodiode, and hence there will be no incidence of the radiation on the photodiode. Please refer to the right part of the illustration given below for better understanding. But, if we place an opaque object in front the two, two cases occur:
Reflective SurfaceIf the object is reflective, (White or some other light color), then most of the radiation will get reflected by it, and will get incident on the photodiode. For further understanding, please refer to the left part of the illustration below.

Non-reflective Surface

If the object is non-reflective, (Black or some other dark color), then most of the radiation will get absorbed by it, and will not become incident on the photodiode. It is similar to there being no surface (object) at all, for the sensor, as in both the cases, it does not receive any radiation.